Numpy Element Wise
layout: single title: Numpy - Element Wise Operations toc_label: Numpy - Element Wise Operations categories: [Python] tags: [Numpy, Broadcasting] author_profile: false search: true use_tex: true —
Element Wise Operations
Element Wise Operations
Scalar Operations
Scalar Addition
array + int
array - int
array * int
array / int
for all element, add the specified value of integer
Array Operations
array1 + array2
array1 - array2
array1 * array2
array1 / arra2y
Dimension of both arrays are equal in the above array element-wise operations.
Broadcasting
Broadcasting operation is the mechanism that automatically adjusts the shapes of arrays with different size during arithmetic operations.
Example
A (2d array): 5 x 4
B (1d array): 1
Result (2d array): 5 x 4
A (2d array): 5 x 4
B (1d array): 4
Result (2d array): 5 x 4
A (3d array): 15 x 3 x 5
B (3d array): 15 x 1 x 5
Result (3d array): 15 x 3 x 5
A (3d array): 15 x 3 x 5
B (2d array): 3 x 5
Result (3d array): 15 x 3 x 5
A (3d array): 15 x 3 x 5
B (2d array): 3 x 1
Result (3d array): 15 x 3 x 5
a = np.array([[1, 2, 3], [4, 5, 6],[7, 8, 9]])
b = np.array([0, 1, 0])
print('Array "a":')
array_info(a)
print('Array "b":')
array_info(b)
print('Array "a+b":')
array_info(a + b) # b is reshaped such that it can be added to a.
# b = [0,1,0] is broadcasted to [[0, 1, 0],
# [0, 1, 0],
# [0, 1, 0]] and added to a.
Array “a”:
[[1 2 3]
[4 5 6]
[7 8 9]]
Array “b”:
[0 1 0]
Array “a+b”:
[[1 3 3]
[4 6 6]
[7 9 9]]
Detach
detach()
-
역전파(gradient 계산)에서 해당 텐서를 분리합니다.
-
즉, 이 텐서는 계산 그래프에서 더 이상 연결되지 않음을 의미합니다.
-
주로, 학습 중에 모델의 출력값이나 중간 결과를 단순히 값으로만 쓰고 싶을 때 사용합니다.
Leave a comment