Derivative
Derivative, Differentiate
Derivative, Differentiate
Fundamental
$\frac{\partial}{\partial x}(x^n) = n x^{n-1}$
E.g.
-
$\frac{\partial }{\partial x}(x^3) = 3 x^{2}$
-
$\frac{\partial }{\partial x}(x^4 -3x +7) = 4x^3 -3$
Product Rule
곱의 미분법
앞 미분 x 뒤 + 앞 x 뒷 미분
$h(x) = f(x) \cdot g(x)$
= $f’(x) \cdot g(x) + f(x) \cdot g’(x)$
E.g.
$f(x) = x^2$, $g(x) = \sin{x}$
- $h(x) = 2x \cdot \sin{x} + x^2 \cdot \cos{x} $
Differentiate trigonometric functions
Function | Derivative |
---|---|
$\sin(x)$ | $\cos(x)$ |
$\cos(x)$ | $-\sin(x)$ |
$\tan(x)$ | $\sec^2(x)$ |
$\cot(x)$ | $-\csc^2(x)$ |
$\sec(x)$ | $\sec(x)\tan(x)$ |
$\csc(x)$ | $-\csc(x)\cot(x)$ |
Chain Rule
The Chain Rule is a method to find the derivative of a function inside another function.
Dif. outer function x Dif inner function
Chain Rule Formula (General)
If, $f(x) = g(h(x))$ Then, $f’(x) = g’(h(x)) \cdot h(x)$
Structure
Lets said we have,
$f(x) = \sin{x^{2}}$
Here,
- Outer function: $\sin{x}$
- Inner function: $x^2$
Chain Rule said
,
$\frac{\partial}{\partial x} f(x) = \frac{\partial}{\partial u} \sin{(x)} \cdot \frac{\partial u}{\partial x}$
So, the answer is,
$\frac{\partial}{\partial x} \sin{(x^2)} = \cos{(x^2)} \cdot 2x$
E.g.
- $f(x) = \cos{(3x)}$
- = $\frac{\partial }{\partial x}( \cos{(3x)})$
- = $-\sin{(3x)} \cdot 3$
- = $3 \sin{(3x)}$
- $f(x) = (5x^2 +1)^3$
- = $3(5x^2 +1)^2 \cdot 10x$
- $30x (5x^2 +1)^2$
Leave a comment