Machine Learning 101
Machine Learning 은, 데이터를 통해 패턴을 학습하여 일부의 데이터만으로 예측하는 알고리즘의 집합
Kind of Machine Learning Decided by Data
- Supervised Learning
- Unsupervised Learning
-
Reinforcement Learning
Machine Learning Pipe Line
Supervised Learning
Regression
- Linear and Non-linear Regression
- Gradient Descent
- Bias and Variance Trade-off
- Over and Under-fitting
- Weight Regularization
Classification
- Logistic and Soft-max Regression
- Support Vector Machine (SVM)
- Dicison Tree
- Linear Discriminant Analysis (LDA, Supervised)
Ensemble (Complex, Super/Unsupervised)
Regression vs. Classification
Regression (회귀)
- Input (Feature) : Real number (실수형), Discrete value(범주형) etc..,
- Output (Predict) : Real number (실수형, 이산값)
- Model shape : normal function shape (eg. $y = w_{1}x + w_{0}$)
Classification (분류)
- Input (Feature) : Real number (실수형), Discrete value(범주형) etc..
- Output (Predict) : Discrete value (범주형)
- Essential Function for last node
- Binary classification (이진 분류) : Sigmoid function
- Multiple Classification (다중 분류) : Soft-max function
Unsupervised Learning
Dimension Reduction (차원 축소; Data pre-processing)
Kind of Feature Extraction in DR
- Singular Value Decompostion (SVD)
- Principal Component Analysis (PCA)
- Linear Discriminant Analysis (LDA)
- t-SNE
- UMAP
Clustering
Parametric
Non-Parametric
Hierarchial Clustering
Parameter vs. Hyper-parameter
Parameter (weight)
- learnable parameter within model
- ex) $w_{0}, w_{1}, … w_{D}$
Weight Regularization (L1 / L2 Regul’n)
- L1 Lasso Regularization, L2 Ridge Regularization, Elastic Net
Hyper-parameter
- adjust by administer
- ex) Learning rate, Disposition size(배치 크기)
Data structure
- Feature (attribute) : information = X
- Label : results = y (predict : y_hat)
All Relative Documents
Linear and Non-linear Regression
Logistic and Soft-max Regression
Linear Discriminant Analysis (LDA)
Singular Value Decompostion (SVD)
Principal Component Analysis (PCA)
Leave a comment