1 minute read

Machine Learning 은, 데이터를 통해 패턴을 학습하여 일부의 데이터만으로 예측하는 알고리즘의 집합

Kind of Machine Learning Decided by Data

  • Supervised Learning
  • Unsupervised Learning
  • Reinforcement Learning

    ml


Machine Learning Pipe Line

Supervised Learning



Regression


Classification


Ensemble (Complex, Super/Unsupervised)


Regression vs. Classification

Regression (회귀)

  • Input (Feature) : Real number (실수형), Discrete value(범주형) etc..,
  • Output (Predict) : Real number (실수형, 이산값)
  • Model shape : normal function shape (eg. $y = w_{1}x + w_{0}$)


Classification (분류)

  • Input (Feature) : Real number (실수형), Discrete value(범주형) etc..
  • Output (Predict) : Discrete value (범주형)
  • Essential Function for last node
    • Binary classification (이진 분류) : Sigmoid function
    • Multiple Classification (다중 분류) : Soft-max function


Unsupervised Learning



Dimension Reduction (차원 축소; Data pre-processing)

Kind of Feature Extraction in DR


Clustering

Parametric


Non-Parametric

Hierarchial Clustering


Parameter vs. Hyper-parameter



Parameter (weight)

  • learnable parameter within model
  • ex) $w_{0}, w_{1}, … w_{D}$

Weight Regularization (L1 / L2 Regul’n)

Weight Regularization

  • L1 Lasso Regularization, L2 Ridge Regularization, Elastic Net


Hyper-parameter

  • adjust by administer
  • ex) Learning rate, Disposition size(배치 크기)


Data structure



  • Feature (attribute) : information = X
  • Label : results = y (predict : y_hat)

Data for Machine Learning


All Relative Documents



Linear and Non-linear Regression

Gradient Descent

Learning Rate

LRS (Learning Rate Scheduler)

Optima (Local minima problem)

Bias and Variance Trade-off

Logistic and Soft-max Regression

Support Vector Machine (SVM)

Dicison Tree

Linear Discriminant Analysis (LDA)

Ensemble (Complex)

Bagging

Boosting

Dimension Reduction

Singular Value Decompostion (SVD)

Principal Component Analysis (PCA)

Linear Discriminant Analysis (LDA)

t-SNE

UMAP

Clustering

Gaussian Mixture Model

K-Means

Mean Shift

DBSCAN

Hierarchial Clustering

Weight Regularization

Over and Under-fitting

Data for Machine Learning

Leave a comment